Displacement Analysis
of Spherical Mechanisms Having
charles w. wampier | Three or Fewer Loops

General Motors R&D Center,

Mail Code 480-106-359, Spherical linkages, having rotational joints whose axes coincide in a common center

30500 Mound Road, point, are sometimes used in multi-degree-of-freedom robot manipulators and in one-

Warren, MI 48090-9055 degree-of-freedom mechanisms. The forward kinematics of parallel-link robots, the in-

g-mail: charles.w.wampler@gm.com verse kinematics of serial-link robots and the input/output motion of single-degree-of-

freedom mechanisms are all problems in displacement analysis. In this article, loop
equations are formulated and solved for the displacement analysis of all spherical mecha-
nisms up to three loops. We show how to solve each mechanism type using either a
formulation in terms of rotation matrices or quaternions. In either formulation, the solu-
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1 Introduction taken together, the solutions of this paper can be used to solve all

We consider in this paper mechanisms consisting of riaid lin three-loop spherical structures and many composite structures
. . . pap gorrng aving more than three loops. In this paper, all five indecompos-
with rotational joints between them. Such mechanisms can

classified into three broad categories: planar, having rotatio le structures up to three loops are formulated and solved in a
O . . gories: planar, g rotal nsistent manner that is easy to implement in a computer pro-
joints with axes all parallel; spherical, having rotational joint

> B e . ?g]ram.
whose axes coincide in a common center point; and spatial, be %nother contribution of the paper is a new elimination proce-

all other cases. Methods for displacement analysis oplathar dure, closely related to Sylvester Dialytic Elimination. This pro-
_mechanlsms having rotatl_onal joints have been recently pUbI'Sh@ ure facilitates the solution of the problems in hand without
in [1-3]. This paper provides solution methods for the d'SplaC?ﬁtroducing extraneous roots

ment analysis of allspherical mechanisms that have three of 6 haner s organized as follows. First Section 2 reviews the
fewer loops. These solutions are useful for the forward kinematigg, «sification of spherical mechanisms into distinct topological
of Sphe.“cé' parallel-link robots, _the |nverse_k|nemat|cs (.)f Sphel'IS'/pes. Then, in Section 3, we discuss the formulation of loop
cal serial-link robots(e.g., certain robot wrisjsand the input/ ¢|qre equations, both in terms of rotation matrices and quater-
output motion of spherical single-degree-of-freedom mechanismg, s The new elimination technique is presented in Section 4.
They are also useful in analyzing certain spatial mechanis\ then proceed to solve each mechanism type in Sections 5-7.
whose displacement can be solved by first solving the rotatioRgl, present solutions by both rotation matrices and quaternions
component of the loop closure equations, followed by a solutig,cayse each formulation has certain advantages. Each solution is
for the translational component of the loop equations. One &fgitten in terms of a procedure that leads to a generalized eigen-

ample is the RCCC spatial four-bar; the “Group 1 spatial mechgzjye problem. In an appendix, a numerical example is given for
nisms” listed in[4, p. 141 are also examples of this type. each problem type.

A displacement analysis problem for andegree-of-freedom
mechanism is to find, given the valuesmfnput joints, the cor- » Spherical Structures
responding values of the remaining output joints. For the purpose ) . )
of displacement analysis, the two links adjacent to a given inputAS argued in the Introduction, once we have given the values of
angle can be temporarily replaced by a single rigid link of confl Joints of ann-degree-of-freedom mechanism, the determination
mensurate dimensions. Thus, displacement analysis reduces todh#€ locations of all the links amounts to solving the loop equa-
problem of determining the assembly configurations of a relaté@ns of a zero-degree-of-freedom structure. Wherever the value of
immobile structure. Fh_e joint angle betwgen two links is given, we _S|mply_ regarq the
The new contribution of this paper is to give simple solutions #9int as frozen; that is, we replace the pair of links with a single
the three indecomposable three-loop spherical structures; all oth@ of commensurate dimensions. In this way, the treatment of all
three-loop spherical structures are composites of one-loop atRperical mechanisms immediately reduces to the treatment of just
two-loop structures. There is only one type of one-loop spherichi€ structures. ) _ .
structure, the spherical triangle. Its solution is given by the cosinePlanar mechanisms having only rotational joints can be re-
law for spherical triangles, discovered by Johannédievita.k.a., 9arded as special cases of spherical mechanisms in which the
Regiomontanusin the mid-fifteenth century5, pp. 237—24p common center point is at infinity. Because of this relationship,
Solutions for the spherical pentad, the only indecomposable tw@?€ finds that a topological classification, which depends only on
loop spherical structure, did not appear until a few years a&'&e number of links and the list of joint connections between
[6—8]. Solutions for the input/output relations of certain eight-linkNem, is identical for planar and spherical linkages. In the corre-
spherical mechanisms that reduce to three-loop structures gpondence between equivalent planar and spherical linkages, the
given in[9]. We include here the solutions to the one and twdistance between two rotational joints in a planar link is replaced
loop cases for completeness and to illustrate the general approB¥hthe angle between the corresponding joints in the spherical

before proceeding to the more difficult three-loop cases. Th inkage. These angles are the so-called twist angles if one adopts
the standard Denavit-Hartenburg description of the linkégek
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JOURNAL OF MECHANICAL DESIGN. Manuscript received July 2002; revised JuneS€Ct in @ common pointlt is natural to visualize the spherical
2003. Associate Editor: C. Mavroidis. linkage as a figure drawn on the surface of a sphere, with joint
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Fig. 3 Three-loop structure, type 3a

Fig. 1 Spherical triangle

root of (or equivalent tp a variety of concepts in the kinematics
literature, such as “basic kinematic chains,” “Assur groups” and
axes as rays from the center that pierce the sphere and with twgarranov trusses.”
angles drawn as great arcs on the sphere. If these arcs are smafhue to the equivalence of the topological characteristics of pla-
the linkage occupies only a tiny portion of the sphere’s surfacgar and spherical structures, the catalog of indecomposable planar
leading to a planar linkage in the limit as the arc lengths go taructures suffices for the spherical case as well. Complete classi-
zero. This limiting process was used [ib0] as a means of syn- fications of three loop structures and how they are built up from
thesizing a planar mechanism by first designing a nearby spherigg indecomposable structures are reportefd}. For one loop,
mechanism. we have only one structure: the triangle, shown in Fig. 1. The
Structures can be classified as eitdecomposabler indecom-  two-loop and three-loop indecomposable structures are illustrated
posable A decomposable structure contains some proper subsei®fFigs. 2—5. In accordance with the number of links in each of
links that form a structure by themselves; the displacement anafjiese structures, some authors call the triangle a “triad,” the two-
sis of such structures can be carried out by first finding all assefop structure the “pentad,” and the three-loop structures as “sep-
bly configurations of the substructure and then substituting eagltis” [12]. lllustrations of all the planar structures up to four-
of these as a single rigid link into the full structure. After thisoops can be found ifi13].
substitution, the full structure may again be decomposable, but
now with fewer links. By such means, the displacement analysis
for all possible structures reduces to the displacement analysis of
the indecomposable structures. These special structures are at the

6
SS

Fig. 2 Two-loop spherical pentad structure Fig. 4 Three-loop structure, type 3b
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With these expressions, we may rewrite E8). as
'S, 7, 2k 1S 12=7'SZ(1+13)- - (1+t2_)),  (5)
which is quadratic in each of the variables . .. t._;.

3.2 Quaternion Formulation. Quaternions can be repre-
sented as a sum of scalar coefficients times the four basis elements
1,i,], k. It is useful to associate the elementg, k with thex, y,
z-axes, respectively, and 1 is just the usual unit scalar. For quater-
nions, loop equations are still in the form of Eg), but now the
quantities in the expression are quaternions, multiplication follows
the rules for quaternions, arlé= 1. Using quaternion notation, a
rotation of §; about thez-axis is written

Z;=cog 6,/2) +k sin(6,/2) =c;+ks; . (6)

Pre-multiplying both sides of Eq1) by the conjugate oZ,,
written Z; = ¢;—ks; , one obtains

Fig. 5 Three-loop structure, type 3c '
9 P yP $1Z:Sr - LS=Z] )

For an arbitrary quaterniog=a+ bi+cj+dk, define functions
that extract individual components &§q]=b and [j,q]=c.

3 Loop Equations Then, we may write two scalar equations from Eg. as

The first step in modeling a spherical structure is to define a set [1,$,2,S,- -2, S(]=0, g
of coordinate axes at each vertex of each link. We may choose to , _ ®)
align the z-axis of each system with the axis of rotation at the [i:$122S, S =0.

joint. Thex andy axes can be given any orientation abauto as |n contrast to the rotation matrix formulation, this maneuver has
to form a right-handed orthogonal coordinate system. Once theggninated only one joint rotatiorZ,; , but this is compensated by
arbitrary definitions of the coordinate systems are set, the assurie fact that we obtain two scalar equations per loop. For concise-
tion that the links are rigid implies that the rotation between anyess below, we will write the two equations for each loop with the
two coordinate systems on the same link is constant. We will calbpreviated notation

such rotations the “side rotations” of the link.

In traversing a loop of a spherical structure, two types of rota- [{i.i},$1Z2S, -2 S] = 0. )
tions are encountered in alternation: joint rotations, which aigatice that the equations are homogeneous and linear in the vari-
variable, and side rotations, which are constant. Hence, a typigdlles{c,,s,}, ... {cy,S}.
loop equation has the form For exposition below, it is somewhat more convenient to deho-
2,52,y - Zk- 1S 1Z:Se=1, 1) mogenize Eq(9) by dividing through byc,: --c, to get
where Z; is a joint rotation,S; is a side rotation, and is the [{0,j},812,S, - Z,S]=0, (10)

identity rotation. One may regard the rotations as either rotatigvr],]ere
matrices or as quaternions: In either case, the composition of two
rotations is found by multiplication. In the following subsections, Zi=Z,/c;=1+Kkt;. (11)

we will consider both formulations. . o .
Equation(10) is linear in each of,, ... .

3.1 Rotation Matrix Formulation. In this case, in Eq(1),
Z; andS; are 3x 3 rotation matrices, is the 3x 3 identity matrix, 4 Elimination Procedure
and sequential rotations are compounded by matrix multiplication.
SinceZz; is a rotation about the-axis, it may be written in terms
of a rotation angled; as

In this paper, we will solve systems of loop equations by a new
method that is related to Sylvester’s Dialytic Elimination proce-
dure. Sylvester’s approach has been used successfully to solve a
cosf, —sing, 0O variety of problems in kinematics, so we begin with a brief syn-
. opsis of it. More details and a review of its application to kine-
Z;=| sing; cosé; O]. (2)  matics can be found ifiL4]. One starts by suppressing one vari-
0 0 1 able, that is, given a system aof polynomials in variables
. {X1, ... Xq}, recast it as polynomials ifx,, ... x,} with coef-
Letting z=(0 0 1)', we observe that'Z=2' andZ;z=z. Thus,  ficjents that depend oxy, . (Since we may renumber the variables
we may extract from the matrix loop equation, Ed), a single 5 will, there is no loss of generality in assumirgis the hidden
scalar equation that is free of bot and 6, as follows: variable) Next, form new polynomials as necessary, by algebra-
'S, Zy 2y 1S 12=2'SlZ, (3) ically combining the original polynomials, until one obtains a sys-

. o _ tem with as many equations as monomials. Lettinge a column
where the right-hand side is tl{8,3)-element ofS, . Notice that yvector of the monomials, write the augmented system of equations
two joint rotations,Z, andZ,, have been eliminated, and we ge§n matrix form as
one scalar equation for each such loop.

In what follows, it is convenient to express both @and sing, [A(X1)Jm=0. (12)

using the tangent-half-angle formulas @5(1—%2)/(1“5) and  For this system to have a nontrivial solutiom+0), it is neces-
sin 6=2t;/(1+t?). With these substitutions in mind, defide as  sary that def\(x,)=0. If this determinantal equation is not identi-
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cally zero, that is, if the equations in the augmented system asnk. Using sparse Gaussian elimination or QR decomposkKign,
linearly independent, then the solutions of Aét;)=0 contain the can be reduced to upper triangular form yielding
solutions to the original system. In general, they may contain

some extraneous solutions as well, a situation that one wishes to K11 K Kz U A
avoid if possible. K K K 0 y
In a typical solution in the kinematics literature, the suppression 2 2 e 2| =, (15)
of a variable is done very early, but it is often beneficial to post- Ix+C;, C, 0 O Y3
pone this until after the equations have first been manipulated into 0 Ix —l, 0 Ya

a more amenable form. In particular, [ib5], several difficult ki-
nematics problems are solved by first computing a graded-degfee some upper triangular matrid. Pre-multiplying by the ifh
Grobner basis and then suppressing a variable as the final stef) X m matrix
The variable is chosen so that after suppression the number of 0 0 | 0
equations and monomials are immediately equal. Q&g for 1
background on Gitaner bases. ( )
A similar, but more rigorous and algorithmic, approach has. .
been put forward if17,18. After computing a reduced Gooer 91VeS the equation
basis, one finds theormal set which is the set of monomials that I,x+Cy C, y
are not divisible by any leading monomial of the basis. One may - - )( 1) =0,
then derive an eigenvalue problem in which one variable is the K21 Koot Kagx/ Y2
eigenvalue and the normal set forms the eigenvector. This is of f§fiere the trailing blocks have been dropped, since they are zero.
same form as Eq12), with A(x,) having a linear dependence onrng ony computation involved is the triangularization Kf,
x1. A key difference, however, is that the eigenvariabjegener- \yhich can be done efficiently by sparse routines. @) is the
ally appears in the monomials in the eigenvector, that,iss not square generalized eigenvalue problem we seek.
completely suppressed. . . For a particular topological type of spherical mechanism, a spe-
The new approach described below accomplishes the same Qi strycture is specified by the values of its “sideS;”. In each
case, one must verify the full-rank condition, numli¢2r above,
dt the procedure to be valid. For each type of mechanism, we

0 I, 0 Ky

(16)

; : - . ) _yotations that this is so. This is sufficient to demonstrate that the
mial equations from the original loop equations. We then identi

; ials that plav th | b | “'procedure is valid for almost all mechanisms of the type, where
a set of monomials that play the same role as the normal set in {§g exceptions are an algebraic subset of the whole family. Such
algorithms mentioned above. The method is no longer general,

. o BA&eptional cases require new procedures, often more simple than
the recipes are specific to the problems at hand, but the resultijd general case. We do not explore any such exceptions in this
algorithms are quite transparent and simple to program.

X a
The approach proceeds as follows. First, generate an augmer?te

er.
. ) X - ﬁs in the original Sylvester method, the new approach gives
system of equations by algebraic operations on the original polys|, 5 necessary condition. It may happen that 86 allows
nomials. In the recipes below, these will be obtained simply

L . : ; B¥traneous roots. However, in the application of the method to
multiplying the polynomials by various monomials. Lretbe the  ghherical mechanisms, we find that in every case we are able to
set of all monomials in this augmented system so that it may lﬂEd formulations without any extraneous roots. Again, this has

expressed in matrix form akm=0, whereK is annXm, n  peen verified by working numerical examples and checking that
<m, matrix of constant coefficients. It is assumed that we hav§| he solutions satisfy the original loop equations.

eliminated any linear dependencies, so tdtas full rankn. We To solve one-loop and two-loop spherical mechanisms, the

chgo;ef_a variable, say, ﬁnd a set Og’_rr‘] monomle;I]er1Cm original Sylvester method is sufficient, but for the more difficult
and definem,=x,®m, . These must be chosen such that three-loop mechanisms, the new approach is necessary. For illus-

a simple recipe for generating an augmented system of polyr&i

1. m,Cm, that is, allx, multiples ofm, are inm, trative purposes, we indicate how to solve the simpler cases by the
2. themxm system of equations new method before proceeding to the three-loop case.
N Km
[Kxg) Jm= lel_mz):o (13) 5 One-Loop Mechanism(Spherical Triangle)
is nonsingular for general values »f. The loop equation for the spherical triangle, Fig. 1, may be
. written as

Note thatK is linear inx, and its firstn rows are constant. This
means that dé€(x;)=0 is a degreen—n polynomial equation for 21$12,S,7353=1. (17

X1- ) ) ] Using rotation matrices and E¢p), one has

The preferred numerical method for solving Ef3) is to ex- R

tract and solve an orden—n eigenvalue problem whose eigen- 7'S,2,S,2=7"Sjz(1+13). (18)
vector ism;. To do so, one may partition the monomiatsinto
four sets: ys=my\my, VY,=Va/X;, Yi=mi\y,, and y,
=m\(myums,). PartitioningK to match, we rewrite Eq(13) in
block matrix form as

This is a single quadratic equation for. If the sidesS,,S,,S;

are taken to be rotations about the respeckiaxes, it may be
seen that this is equivalent to the classical cosine law for spherical
triangles. It should be noted that instead of interior angles, our
formulation uses exterior angles at each vertex.

K1 Ky, Ksz Ky Y1 ~The quaternion formulation Eq10) applied to this problem
Ix+C, C, 0 0 zz 0, (14) 9Vves
3 P L 5
0 I,x —1, 0 Va [{i,j},$1225,23S;]=0. (19)

These are bilinear it, andt;, that is, only the following mono-
wherel 1, are identity matrices an@,,C, are sparse, having a mials appear{1t,,ts,t,ts}. Following the Modified Sylvester
single entry of—1 in each row of the pair. In some cases, the lastpproach from above and choosing={1t,}, m,={ts,t>t3},
blockwise column is not present, but if it is, it must be full columrone gets a system of the form
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( A B ) m, Sylvester Dialytic Method gives a system of minimal degree. In-
( )— , (20) stead, it will lead to a system having extraneous roots, which

sl —1 either cost extra computation to find and eliminate or require ad-

in which A andB are 2x 2 matrices of coefficients from the loop ditional reduction steps to remove from the analytical equations.

equations. Following the formulation of Section K,=A, K5 In contrast, the new approach of Section 4 leads directly to an

=B, andK,, K, are not present, so we premultiply by B) to eigenvalue problem of minimal size.

get the 2<2 eigenvalue problem

m,/

7.1 Type 3a. By counterclockwise progression around each
(A+Btz)m;=0. (21) of the three loops in Fig. 3, one obtains three-loop equations as

. . . . . follows:
In this case, sincen, is identical to the complement of, (i.e.,

m,=m\m,), the modified elimination method amounts to the 70507 S.7 457 S = |

same thing as the traditional Sylvester Dialytic Method. 959722552556 Z6512= 1.

6 Two-Loop Mechanism (Spherical Pentad 275125512150Z4S10=1, 27)
The loop equations for the two-loop spherical pentad, Fig. 2, Z6S5715,7,557Z5S1, = 1.

can be written as

_ The inverse rotationZ; appear where we traverse a joint in one
255121S5,2,S3Z235,=1, . . L )
5512152255255 (22) loop in the opposite direction of the adjoining loop. Note that the
26S5Z21S,2,S6Z4S;=1. loop around the central link implieS;=(S;S,)’.
Using rotation matrices, one obtains two quartic equations wThe rotatpngl matrix formulanpn eliminates the six angles
R , .. .,09, giving the three equations
f1=2"[$,2,5,2,S;~ Sj(1+13)(1+15)]z=0, 23) f1=2"[S92555Z3S6—~ SIA 1 +15)(1+15)]2=0,
— e % a5 T 2 2)12= 5Tq 5
f2=2'[S52:5,2,S6— S7(1+17)(1+15)]z=0. f,=2"[S,235,2,S,— So(1+1t?)(1+13)]z=0,

28
The total degree is %= 16, but the number of roots is only half (28)

that figure, because the equations are bi-quadratic. This can be f3=2"[S521S,2,S5— Sl (1+12)(1+13)]z=0.
seen by computing the two-homogeneous Bezout nuifit#ras
the coefficient ofa3 in the polynomial (2v+28)2, which is 8.  The three homogeneous Bezout number for this system is the
To solve this system, first augment it with the equatidgs coefficient of aje,az in the polynomial (2v;+2a3)(2ay
=0, f,=0 wherefy=t,f, and f,=t,f,. Let To={1t,tt5}. +2a3)(2a;+2a,), which is 16. Note that the equations are
The four polynomials ,f,,f5,f, contain 12 monomials, namely Numbered such thd is missing variable; . ,
TO,T1=t2®TO,T2=t§®TO. In the traditional Sylvester approach, An order 16 eigenvalue prc_)blem may be_de_rlved as follows.
one writes the system in the forM (t,) To=0, whereM is a 4 Froduce an augmenge% equation set by multiplying dadly the
X 4 matrix with entries that are quadratictip. This leads to the 16 monomials{1t; 'ti_}®{1'ti}?‘f3’{1’tk}- 2Th3'5 gives 48 equa-
eighth-degree polynomial equation diégt,)=0. tions in the 64 monomials= @izl{l,ti NN }. Notice that the
To apply the method of Section 4, let;={T,,T,}, andm, difference, 64-48=16, is the size of the eigenvalue problem we
={T,,T,}. Append the eight identities,T;—T;=0 andt,T, seek. We choosé; as the eigenvariable and seek a list of 16
—T,=0, write the equations in the block matrix form as in Egmonomialsm;Cm such thatt;®m;Cm and the corresponding
(14) and premultiply by a matrix that annihilatds as follows: = matrix K(t;) is generally nonsingular. By numerical test on a
generic example, we have verified that
KO K]_ K2 TO

) t,l -1 0 || Ty]=0. (24) my=[{L1t1,ta} @ {1, 13,t3H 1 U{tts tatots, 15,15}

0 I —I T2 is sufficient in this regard. Reduction to an order 16 eigenvalue

(In this caseK, of Eq. (14) does not exis}t.Multiply this out and problem proceeds as in Section 4.

drop away the trailing trivial columns to get arx® eigenvalue ~ We may also solve the problem using quaternions. The quater-

problem. nion version of the loop equations only eliminates angles
Using quaternions, one obtains two equations per loop, forfa,fs,6s, giving the six equations

total of four equations iny,t,,t3,t4:

f1=[{i.i},$1215,255:2554]1=0,

01 0
I 0 K,

fi= [{i ] } ) S72;4,51215424510] =0,

(25) A A
fo=[{i.i},S5215,25S6Z24S;1=0. fo=[{i.i}, Ss215,255525511] =0, (29)
Note thatf,; does not contaity andf, does not contaityg, and so g e D oS _
it is useful to append four new equations: Fa=[1i.i}, 5922552356 265121 =0
t,f1=0, tsf,=0. (26) Atfirst, it might seem a disadvantage that we have more variables

than in the formulation with rotation matrices, but because the
quations are lower in degree and more sparse, there is no in-

crease in difficulty. The six-homogeneous Bezout number is still

6. To solve, note that for eadh, there are three variables among

t1, ... te which do not appear: call them,t, ,t;. Multiply the

) equations by the eight monomigl tj}® {1t j®{1t} to get 6

7 Three-Loop Mechanisms -8=48 equations in the 64 monomiais= ®?_,{1t;}. Choosing
Three-loop systems are, not surprisingly, a bit more difficutt; as the eigenvalue, we find that the monomial 8t

than the one-loop or two-loop systems. In particular, it is ne-[{1t,,t3,tsts,ts,tots} @{1 s} ]U{ts,tote,tats, totats}, Suffices

longer simple to find a formulation for which the originalto derive an order 16 eigenvalue problem.

Altogether, we have 8 equations involving 16 monomials. L
m={1t,}®{1ts}®{1t,} andm,=t;®m,, append the 8 iden-
titiest;m; —m,=0 to proceed in a similar fashion as above to g
an 8x 8 eigenvalue problem.
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7.2 Type 3b. The loop equations for Type 3b mechanisms, i 5 e e’ _
Fig. 4, are f1=[{i.i},$4215,2,5,2,S;] =0,

2734218122822483: | i f2 [{IIJ}lSBZl 181225523862587] 01 (35)
5512555745575 =1, (30) . f3 [{l11}1811215122852389?6510] 0
The six-homogeneous Bezout number is 32. To solve, generate an
Z6511Z2151Z,S475SZ6S10=1 - augmented system of equations by multiplying by all the multi-
) ] ] linear monomials in the missing variables. We get the safhe 2
For rotation matrices, these give =64 monomials as before, but only 8+2-4+2.4=32 equa-
A - tions. Choosing to solve far, a sufficient choice of monomials
f]_: ZT[S4Z]_S]_22$2_ S‘g(l""ti)(l"‘tg)]zz O, IS ml: ®i6:2{l!tl}'

f2=2'[$,23%SSs— SE(1+15)(1+15)]z=0,  (31)
8 Back-Substitution

_ T 5 e9 aly o _aT 2 2 2\75—
fa=2'[51121512555Z359 —~ Sy 1 +11) (1 +15)(1+13)]2=0. Back-substitution is the process of finding all of the joint angles

The appearance of all three variabled jrincreases the number of &ftér the basic eigenvalue problem has been solved. In our formu-
roots: the three-homogeneous Bezout number is now 24. The lggions, the eigenvalues are the solutions for one variable. The
lution procedure is similar to that used for Type 3a mechanisrg€nvectors are, up to scale, the monomials In every case,
First, an augmented system is produced by multiplyipgf,,f5 M1 includes the monomial 1, so the cor're.spondlng elemept in the
by all possible monomials that give degrees less than or equal tgigenvector reveals the scale factor. If it is zero, the solution is at
for each of the variables. Thus, we get the same 64 monomials'34ity; otherwise, we may divide out the scale factor and retrieve
before, but sincd; now has all three variables at the outset, wi€ other variables; that appear in the equations. _
get fewer equations. Bothi, and f, give 16 equations in the _ 1here are, however, some angles that do not appear in any of
augmented system, bty gives only 8, for a total of 40 equations.the equations, because we eliminate them in the initial formula-
The excess of moﬁomials over eqdations is-@@=24 so we ton. For the quaternion formulations, in the notation of EL,
must append 24 identities to get the desired eigenvalue form tBe initial angled, is eliminated. That angle is easily recovered by
the problem. Choosing to solve fot;, we find that m, Inverting the other rotations, that is

2.3 21423, .3 ; )
=[({ Lttt e{ L) Uts tits to, tyt5} J@{1ts},  which has Z2,=(S125Sy  Zk-1S-1ZkSd) -
24 elements, suffices to form a nonsingular eigenvalue problem.

For quaternions, the loop equations yield For the rotation matrix formulations, two anglég and 6, are

eliminated from each loop, see E(), so we must reconstruct
L oo T o
f.=[{i.i'.5,2:5,2,5,7 =0, both of them. Pre-multiplication of Eql) by z' yields 3 equa-

1= L1 8424812252485 tions free off, . For back-substitution, one may use the first two,
which are linear in the sine and cosine&f, and therefore give a

Fo=[{1.1},$:255225525%]=0, (32) unique value(The third of these is exactly E@5).) Once 6, is
s A e S D S _ known, one may reconstruct the leading rotation in the same way
fa=[{i.i},S1121512,8§2359Z6S10] = 0. as for the quaternion formulation.

The six-homogeneous Bezout number is 24. To solve, generate an
augmented system of equations by multiplying by all the multjx . .
linear monomials in the missing variables. We get the safhe 9 Solutions at Infinity
=64 monomials as for the Type 3a quaternion formulation, but If = thent=tan(4/2) is infinite, so if a mechanism has a
only 2.8+2-8+2-4=40 equations. Choosing to solve fgr, a  solution nearr, numerical trouble occurs. There is a simple fix for
sufficient choice of monomials ism;=[({1t,}®{1ts} this problem: replace the angle with= ¢+ c, for some constant
{1t )U({Lt,, 1ot tata} @ {ts}) J®{1te}). ¢, and solve for the new variabl¢. The z-rotation of angle is
. . constant and can be absorbed into the adjacent side rotafidfs,

7.3 Type 3c. The loop equations for Type 3¢ mechanism§ye choose at random, there is a zero probability that the solution
Fig. 5, are for ¢ will be exactly 7 and only a small probability that it will be
close enough ter to cause trouble.

21542151225:2455= 1, A somewhat more elegant approach is to treat the variables
_ homogeneously. For quaternions, this just means that at&8tg.
2858215125525 2557 =1, SO keeps=sin(@/2) and c=cos@?2) both as variables. In the
205117151 755575S0Z6S10= | - elimination procedures above, where we multiply{tijt}, instead
multiply by {c,s}, and where we use an identityn; —m,=0, use
For rotation matrices, these give sm;—cm,=0. The final result will be a generalized eigenvalue
L problem inc ands, that is, a problem of the formAc+Bs)m
f1=2"[S4215.2,S,— Sy(1+13)(1+13)]z=0, =0. When solved by thgz algorithm in Matlab, based of20],
this formulation is immune to th&= problem. For rotation
f,=2"[S521$12,S523S6— Sj(1+15)(1+15)(1+15)]z=0, matrices, a similar treatment may be obtained by usage of the

(34) substitutions sim=(2s9/(c* +s°) and co9=(c*~)/(c*+S),
which after clearing denominators, leads to homogeneous equa-
fa=2151121$12,55258y— Sl 1+ 1) (1+t5) (1+1§)]z=0.  tions.
It may happen that a problem yields solutions of the fdrm
The three-homogeneous Bezout number now rises to 32. Form-ar- /=T, or equivalently in the homogeneous treatmeht s?
augmented system, as before, with equations having up to th@. These are solutions at infinity of another type: they give no
cubic power of each variable, for a total of £8+8=32 equa- well-defined value for. Such solutions indicate that the mecha-
tions in 64 monomials. If we choose to solve tgr, a sufficient nism under study is a special one with fewer solutions than the
choice of monomials isn;={1t,,t2,5}@{1t,}®{1t3,t3,t3}. general case. This implies that a reduction of the problem should
For quaternions, the loop equations yield be possible.
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10 Conclusion

Table 1 Solutions for triangle

(tangent half-angles )

This paper shows how to formulate and solve the loop equa-

tions for all the indecomposable spherical structures up to three
loops. Formulations using rotational matrices and quaternions gr
both considered. In each case, the problem has been transformed

t t t3
—1.949937 —0.979864 —2.900527
€ 1.949937 0.979864 2.900527

into an eigenvalue problem of minimal degree. Numerical ex-
amples of each have been solved and found to be well behaved.
The number of solutions for each case is as follows: one-loop
(triangle), 2; two-loops(pentad, 8; three-loops type(&,b,9, 16,
24, and 32, respectively. For the topologically similar planar
mechanisms, these numbers are 2, 6, 14, 16, and 18. It is curious
that the complexity of the three-loop spherical mechanisms is
more strongly affected by topology than their planar counterparts.
As shown by examples in the Appendix, spherical structures with
all real roots are known for the triangle, the pentad and structure
3a, but it is not yet known whether there exist structures of type
3b or 3c having all real roots.

These results have application to forward and inverse kinematic
solutions for all kinds of spherical mechanisms, from one-degree-

Type 3a. The given sidegunits in radian are:

S,=R,(4.863, S,=R,(1.029R,(5.339,

$=S:51,

Ss=R,(5.464R,(1.659,
Se=R,(5.884R,(1.448,

Table 2 Solutions for pentad

S,=R,(0.893R,(1.857,

(tangent half-angles )

of-freedom mechanisms up to multi-degree-of-freedom robots. ty t, ts
The methods also apply to solving the rotational component of the
. . - . 7.791279 —0.361058 0.107830
Ipop closure equations for spatial mechanlsms..AIso, the eliming- — 2294342 1.330759 —0.429469
tion approach introduced here may have uses in the treatmengof 2.005683 0.096003 —0.492788
other spatial mechanisms and systems of polynomial equatichs —0.265766 —0.785437 3.773640
arising in other fields. 5 0.042981 5.488394 —29.689637
6 0.258660 —12.402011 3.878452
7 1.228881 0.164803 —0.809339
8 1.084466 —2.835662 0.917918

Nomenclature

Table 3 Solutions for type 3a

(tangent half-angles )

AUB = union of setsA andB

A®B = product of sets{all x|x=ab, acA, beB} ty ty ts

A\B = set minusA—(ANB) _ 1 —48.566592 —2.515025 0.061630

¢ ,Si,tj = half-angle functions co$(2),sin(6/2),tan@/2) 2 42.882497 1.034898 —5.306974
3 9.041544 —3.058067 0.074276

4 2.432176 0.600422 —1.445874

5 2.571563 —5.427725 —1.764800

; 6 —2.038693 —1.152379 —3.777007
Appendix A 7 1.602743 0.468618 2.361986
. . . 8 —1.567532 —10.216266 0.073543
Numerical Examples. This appendix tabulates an example g —1.318230 ~5.005893 0.083233

problem and its solution for each mechanism type. Side rotationsi0 —1.003469 —3.087755 —1.992006

are given in terms of rotation functiom® («) andR,(«), which 11 é-ggglfg% 056232(7)?5 *8-882?8?
are rlghtjhanded rotations of angie(in radiang about thex-axp 0421327 0314664 4679430
and z-axis, respectively. To save space, answers are given asy 0.373999 0.787632 4.480535
tangent-half-angles for joints 1, 2, and 3. Even though there areis —0.066276 0.342857 2.205674

nine joints in the three-loop mechanisms, they have been num-16 —0.053188 —1.157316 —0.097254

bered so that the first three determine the relative orientation of &if
the ternary and quaternary links, hence locating all the joint axes.
All computations were done in double precision using Matlah

Table 4 Solutions for type 3b

(tangent half-angles )

After joint values were computed from the eigenvectors, the re- ty t, ts
. . . . o
sndl_JaIs in the loop equations were checked. The magnitude of the 0300238 0975914 0141182
residuals was always better than I0and commonly better than 8.099887 1.285612 0.750772
10 %2, showing a high level of numerical stability. Of course, 3 —4.631640 —0.558862 —0.826819
i i inle 4 5.155489 5.750268 0.839257
random samplu_wg doe_s_ not encounter problgms having njul_tlple 3555447 0358801 2Can104
roots or other singularities, which might require more specialized g —0.014653 0.125571 0.011801
procedures to compute accurately. 3.010856 0.864406 —1.052918
. . . . . 8 3.491401 2.753540 —2.720061
Triangle. The given sidegunits in radian are 9 2.801305 —2.288869 —1.808784
10 1.758171 —2.351800 1.824165
SI=R(.3), S,=R\(.4), S3=R,(.5). 11 1.342918 1.194637 —2.074716
) _ _ ) 12 1.021104 1.082175 0.983192
The numerical solutions are listed in Table 1. 13 —0.911262 0.029402 —1.012938
_ _ o . 14 —0.722349 0.041045 1.892119
Pentad. The given sidegunits in radian are 15 0.535529 —2.745870 1.627629
16 0.336466 —3.201457 —2.252201
S, =R,(2.09, =R, (4.59, =R (5.24), 17 —0.337104 —0.063246 2.073473
1=R(2:09, $=R(459,  S=R(5.24 18 —0.000938 0.125950 0.013773
_ _ 0.127673 —0.864050 1.061203
S,=R\(4.84), S;=R,(4.99R,(4.22, 20 —0.008712 —1.048319 ~0.214501
0.042197 1.256272 0.856293
Ss=R,(2.19R,(4.59, S;=R(1.42. 22 —0.175480 —0.413658 —0.831313
. . . .23 —0.148142 —0.676910 —0.840920
This example is notable for having all real roots. The numerical 24 —0.149006 —0.936849 3.028856

solutions are listed in Table 2.
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Table 5 Solutions for type 3¢ (tangent half-angles ) Type 3c. The given sidegunits in radian are:
t, t, ts S$1=Ry(5.01), S,=Ry(5.59,
1 —10.949013 —1.280400 0.021278 S3=Ry(1.39, $=Ry(3.76R,(1.00,
2 5.010578 0.687520 7.722941 _ _
3 4539627 ~1.383537 ~2.719863 Ss=R,(0.24R,(1.33, Se=R(1.78),
4 4.051448 0.746949 —0.155187 _ _
5 —2.337324 —1.232473 —-3.300713 S1=Rx(4.82,  Ss=Ru(2.74R,(1.76),
2.691620 0.291555% —3.383834 =R.(1.66R,(1.1 =R, (4.6
7 3.132934 0.838985 4.821763 So=R(1.60R(1.16,  S0=Ry(4.61),
8 —2.312559 —0.771448 —0.086123 S11=R(4.74).
9 —2.144114 —0.037149 —0.654865 . .
10 —1.804988 —0.200343 1.826531 This type 3c example has 14 real and 18 complex roots. Since the
11 1.502078 1.221439 —0.272128 planar structure of this type can have 18 real roots, at least that
12 0.585683 0.134565 —0.386102 many must be possible for the spherical case, but 14 real is the
1.182659 —4.205445 0834128 4t found in 100,000 random trials. In Table 5, as in the prior
14 0.645892 1.826968 0.624237 )
1.090596 — 2428202 1.068532 €xample, the complex roots occupy two rows each, with the
16 1.040232 —0.736672 0.331547 imaginary part appearing in the second row. The complex conju-
17 *009%74%%?19 0 253%353 *01-1‘;921997%13 gate root is not written in the table, but is implied; the numbering
19 0227070 0.024609 “0.524896 N the first column reflects this.
0.956018 —0.513776 —0.613175%
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Type 3b. The given sidesunits in radian are:
S =R,(1.76, S,=R,(2.30R,(1.46),
S$;=Ry(4.27), S,;=R,(1.20),
S5=R,(0.8)R(0.4]), S¢=R,(5.03,
$;=R\(1.49, S3=R,(0.87),
S9=R,(0.36R,(0.11), S;;=R,(4.77),

S;;=R,(4.0D)R,(0.89).
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