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Displacement Analysis
of Spherical Mechanisms Having
Three or Fewer Loops
Spherical linkages, having rotational joints whose axes coincide in a common c
point, are sometimes used in multi-degree-of-freedom robot manipulators and in
degree-of-freedom mechanisms. The forward kinematics of parallel-link robots, th
verse kinematics of serial-link robots and the input/output motion of single-degre
freedom mechanisms are all problems in displacement analysis. In this article,
equations are formulated and solved for the displacement analysis of all spherical m
nisms up to three loops. We show how to solve each mechanism type using ei
formulation in terms of rotation matrices or quaternions. In either formulation, the so
tion method is a modification of Sylvester’s elimination method, leading directly to
merical calculation via standard eigenvalue routines.@DOI: 10.1115/1.1637653#
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1 Introduction
We consider in this paper mechanisms consisting of rigid lin

with rotational joints between them. Such mechanisms can
classified into three broad categories: planar, having rotatio
joints with axes all parallel; spherical, having rotational join
whose axes coincide in a common center point; and spatial, b
all other cases. Methods for displacement analysis of allplanar
mechanisms having rotational joints have been recently publis
in @1–3#. This paper provides solution methods for the displa
ment analysis of allspherical mechanisms that have three
fewer loops. These solutions are useful for the forward kinema
of spherical parallel-link robots, the inverse kinematics of sph
cal serial-link robots~e.g., certain robot wrists! and the input/
output motion of spherical single-degree-of-freedom mechanis
They are also useful in analyzing certain spatial mechani
whose displacement can be solved by first solving the rotatio
component of the loop closure equations, followed by a solut
for the translational component of the loop equations. One
ample is the RCCC spatial four-bar; the ‘‘Group 1 spatial mec
nisms’’ listed in @4, p. 141# are also examples of this type.

A displacement analysis problem for ann-degree-of-freedom
mechanism is to find, given the values ofn input joints, the cor-
responding values of the remaining output joints. For the purp
of displacement analysis, the two links adjacent to a given in
angle can be temporarily replaced by a single rigid link of co
mensurate dimensions. Thus, displacement analysis reduces
problem of determining the assembly configurations of a rela
immobile structure.

The new contribution of this paper is to give simple solutions
the three indecomposable three-loop spherical structures; all o
three-loop spherical structures are composites of one-loop
two-loop structures. There is only one type of one-loop spher
structure, the spherical triangle. Its solution is given by the cos
law for spherical triangles, discovered by Johannes Mu¨ller ~a.k.a.,
Regiomontanus! in the mid-fifteenth century@5, pp. 237–240#.
Solutions for the spherical pentad, the only indecomposable t
loop spherical structure, did not appear until a few years
@6–8#. Solutions for the input/output relations of certain eight-lin
spherical mechanisms that reduce to three-loop structures
given in @9#. We include here the solutions to the one and tw
loop cases for completeness and to illustrate the general appr
before proceeding to the more difficult three-loop cases. Th
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taken together, the solutions of this paper can be used to solv
three-loop spherical structures and many composite struct
having more than three loops. In this paper, all five indecomp
able structures up to three loops are formulated and solved
consistent manner that is easy to implement in a computer
gram.

Another contribution of the paper is a new elimination proc
dure, closely related to Sylvester Dialytic Elimination. This pr
cedure facilitates the solution of the problems in hand with
introducing extraneous roots.

The paper is organized as follows. First Section 2 reviews
classification of spherical mechanisms into distinct topologi
types. Then, in Section 3, we discuss the formulation of lo
closure equations, both in terms of rotation matrices and qua
nions. The new elimination technique is presented in Section
We then proceed to solve each mechanism type in Sections
We present solutions by both rotation matrices and quatern
because each formulation has certain advantages. Each solut
written in terms of a procedure that leads to a generalized eig
value problem. In an appendix, a numerical example is given
each problem type.

2 Spherical Structures
As argued in the Introduction, once we have given the value

n joints of ann-degree-of-freedom mechanism, the determinat
of the locations of all the links amounts to solving the loop equ
tions of a zero-degree-of-freedom structure. Wherever the valu
the joint angle between two links is given, we simply regard t
joint as frozen; that is, we replace the pair of links with a sing
link of commensurate dimensions. In this way, the treatment of
spherical mechanisms immediately reduces to the treatment of
the structures.

Planar mechanisms having only rotational joints can be
garded as special cases of spherical mechanisms in which
common center point is at infinity. Because of this relationsh
one finds that a topological classification, which depends only
the number of links and the list of joint connections betwe
them, is identical for planar and spherical linkages. In the co
spondence between equivalent planar and spherical linkages
distance between two rotational joints in a planar link is replac
by the angle between the corresponding joints in the spher
linkage. These angles are the so-called twist angles if one ad
the standard Denavit-Hartenburg description of the linkage.~Link
offsets and link lengths are all zero since the joint axes all in
sect in a common point.! It is natural to visualize the spherica
linkage as a figure drawn on the surface of a sphere, with jo
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axes as rays from the center that pierce the sphere and with
angles drawn as great arcs on the sphere. If these arcs are s
the linkage occupies only a tiny portion of the sphere’s surfa
leading to a planar linkage in the limit as the arc lengths go
zero. This limiting process was used in@10# as a means of syn
thesizing a planar mechanism by first designing a nearby sphe
mechanism.

Structures can be classified as eitherdecomposableor indecom-
posable. A decomposable structure contains some proper subs
links that form a structure by themselves; the displacement an
sis of such structures can be carried out by first finding all ass
bly configurations of the substructure and then substituting e
of these as a single rigid link into the full structure. After th
substitution, the full structure may again be decomposable,
now with fewer links. By such means, the displacement anal
for all possible structures reduces to the displacement analys
the indecomposable structures. These special structures are

Fig. 1 Spherical triangle

Fig. 2 Two-loop spherical pentad structure
94 Õ Vol. 126, JANUARY 2004
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root of ~or equivalent to! a variety of concepts in the kinematic
literature, such as ‘‘basic kinematic chains,’’ ‘‘Assur groups’’ an
‘‘Barranov trusses.’’

Due to the equivalence of the topological characteristics of p
nar and spherical structures, the catalog of indecomposable pl
structures suffices for the spherical case as well. Complete cla
fications of three loop structures and how they are built up fro
the indecomposable structures are reported in@11#. For one loop,
we have only one structure: the triangle, shown in Fig. 1. T
two-loop and three-loop indecomposable structures are illustra
in Figs. 2–5. In accordance with the number of links in each
these structures, some authors call the triangle a ‘‘triad,’’ the tw
loop structure the ‘‘pentad,’’ and the three-loop structures as ‘‘s
tads’’ @12#. Illustrations of all the planar structures up to fou
loops can be found in@13#.

Fig. 3 Three-loop structure, type 3a

Fig. 4 Three-loop structure, type 3b
Transactions of the ASME
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3 Loop Equations
The first step in modeling a spherical structure is to define a

of coordinate axes at each vertex of each link. We may choos
align the z-axis of each system with the axis of rotation at th
joint. Thex andy axes can be given any orientation aboutz, so as
to form a right-handed orthogonal coordinate system. Once th
arbitrary definitions of the coordinate systems are set, the assu
tion that the links are rigid implies that the rotation between a
two coordinate systems on the same link is constant. We will c
such rotations the ‘‘side rotations’’ of the link.

In traversing a loop of a spherical structure, two types of ro
tions are encountered in alternation: joint rotations, which
variable, and side rotations, which are constant. Hence, a typ
loop equation has the form

Z1S1Z2S2¯Zk21Sk21ZkSk5I , (1)

where Zi is a joint rotation,Si is a side rotation, andI is the
identity rotation. One may regard the rotations as either rotat
matrices or as quaternions: In either case, the composition of
rotations is found by multiplication. In the following subsection
we will consider both formulations.

3.1 Rotation Matrix Formulation. In this case, in Eq.~1!,
Zi andSi are 333 rotation matrices,I is the 333 identity matrix,
and sequential rotations are compounded by matrix multiplicati
SinceZi is a rotation about thez-axis, it may be written in terms
of a rotation angleu i as

Zi5S cosu i 2sinu i 0

sinu i cosu i 0

0 0 1
D . (2)

Letting z5(0 0 1)T, we observe thatzTZi5zT andZiz5z. Thus,
we may extract from the matrix loop equation, Eq.~1!, a single
scalar equation that is free of bothu1 anduk as follows:

zTS1Z2¯Zk21Sk21z5zTSk
Tz, (3)

where the right-hand side is the~3,3!-element ofSk . Notice that
two joint rotations,Z1 andZk , have been eliminated, and we g
one scalar equation for each such loop.

In what follows, it is convenient to express both cosui and sinui

using the tangent-half-angle formulas cosui5(12ti
2)/(11ti

2) and
sinui52ti /(11ti

2). With these substitutions in mind, defineẐi as

Fig. 5 Three-loop structure, type 3c
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Ẑi5S 12t i
2 22t i 0

2t i 12t i
2 0

0 0 11t i
2
D . (4)

With these expressions, we may rewrite Eq.~3! as

zTS1Ẑ2¯Ẑk21Sk21z5zTSk
Tz~11t2

2!¯~11tk21
2 !, (5)

which is quadratic in each of the variablest2 , . . . ,tk21 .

3.2 Quaternion Formulation. Quaternions can be repre
sented as a sum of scalar coefficients times the four basis elem
1, i, j , k. It is useful to associate the elementsi, j , k with thex, y,
z-axes, respectively, and 1 is just the usual unit scalar. For qua
nions, loop equations are still in the form of Eq.~1!, but now the
quantities in the expression are quaternions, multiplication follo
the rules for quaternions, andI[1. Using quaternion notation, a
rotation ofu i about thez-axis is written

Zi5cos~u i /2!1k sin~u i /2!5ci1ksi . (6)

Pre-multiplying both sides of Eq.~1! by the conjugate ofZ1 ,
written Z185ci2ksi , one obtains

S1Z2S2¯ZkSk5Z18 . (7)

For an arbitrary quaternionq5a1bi1cj1dk, define functions
that extract individual components as@ i,q#5b and @ j ,q#5c.
Then, we may write two scalar equations from Eq.~7! as

@ i,S1 Z2S2¯ZkSk#50,
(8)

@ j ,S1Z2S2¯ZkSk#50.

In contrast to the rotation matrix formulation, this maneuver h
eliminated only one joint rotation,Z1 , but this is compensated b
the fact that we obtain two scalar equations per loop. For conc
ness below, we will write the two equations for each loop with t
abbreviated notation

@$ i,j %,S1Z2S2¯ZkSk#50. (9)

Notice that the equations are homogeneous and linear in the
ables$c2 ,s2%, . . . ,$ck ,sk%.

For exposition below, it is somewhat more convenient to de
mogenize Eq.~9! by dividing through byc2¯ck to get

@$ i,j %,S1Ẑ2S2¯ẐkSk#50, (10)

where

Ẑi5Zi /ci511kt i . (11)

Equation~10! is linear in each oft2 , . . . ,tk .

4 Elimination Procedure
In this paper, we will solve systems of loop equations by a n

method that is related to Sylvester’s Dialytic Elimination proc
dure. Sylvester’s approach has been used successfully to so
variety of problems in kinematics, so we begin with a brief sy
opsis of it. More details and a review of its application to kin
matics can be found in@14#. One starts by suppressing one va
able, that is, given a system ofn polynomials in variables
$x1 , . . . ,xn%, recast it as polynomials in$x2 , . . . ,xn% with coef-
ficients that depend onx1 . ~Since we may renumber the variable
at will, there is no loss of generality in assumingx1 is the hidden
variable.! Next, form new polynomials as necessary, by algeb
ically combining the original polynomials, until one obtains a sy
tem with as many equations as monomials. Lettingm be a column
vector of the monomials, write the augmented system of equat
in matrix form as

@A~x1!#m50. (12)

For this system to have a nontrivial solution, (mÞ0), it is neces-
sary that detA(x1)50. If this determinantal equation is not ident
JANUARY 2004, Vol. 126 Õ 95
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cally zero, that is, if the equations in the augmented system
linearly independent, then the solutions of detA(x1)50 contain the
solutions to the original system. In general, they may cont
some extraneous solutions as well, a situation that one wishe
avoid if possible.

In a typical solution in the kinematics literature, the suppress
of a variable is done very early, but it is often beneficial to po
pone this until after the equations have first been manipulated
a more amenable form. In particular, in@15#, several difficult ki-
nematics problems are solved by first computing a graded-de
Gröbner basis and then suppressing a variable as the final
The variable is chosen so that after suppression the numbe
equations and monomials are immediately equal. See@16# for
background on Gro¨bner bases.

A similar, but more rigorous and algorithmic, approach h
been put forward in@17,18#. After computing a reduced Gro¨bner
basis, one finds thenormal set, which is the set of monomials tha
are not divisible by any leading monomial of the basis. One m
then derive an eigenvalue problem in which one variable is
eigenvalue and the normal set forms the eigenvector. This is o
same form as Eq.~12!, with A(x1) having a linear dependence o
x1 . A key difference, however, is that the eigenvariablex1 gener-
ally appears in the monomials in the eigenvector, that is,x1 is not
completely suppressed.

The new approach described below accomplishes the same
come as these methods without formally computing a Gro¨bner
basis. We avoid the algorithmic machinery needed to compu
Gröbner basis and instead, for each of the problems at hand,
a simple recipe for generating an augmented system of poly
mial equations from the original loop equations. We then iden
a set of monomials that play the same role as the normal set in
algorithms mentioned above. The method is no longer genera
the recipes are specific to the problems at hand, but the resu
algorithms are quite transparent and simple to program.

The approach proceeds as follows. First, generate an augme
system of equations by algebraic operations on the original p
nomials. In the recipes below, these will be obtained simply
multiplying the polynomials by various monomials. Letm be the
set of all monomials in this augmented system so that it may
expressed in matrix form asKm50, whereK is an n3m, n
,m, matrix of constant coefficients. It is assumed that we h
eliminated any linear dependencies, so thatK has full rankn. We
choose a variable, sayx1 , and a set ofm2n monomialsm1,m
and definem25x1^ m1 . These must be chosen such that

1. m2,m, that is, allx1 multiples ofm1 are inm,
2. them3m system of equations

@K̂~x1!#m8S Km
x1m12m2

D50 (13)

is nonsingular for general values ofx1 .

Note thatK̂ is linear inx1 and its firstn rows are constant. This
means that detK̂(x1)50 is a degreem2n polynomial equation for
x1 .

The preferred numerical method for solving Eq.~13! is to ex-
tract and solve an orderm2n eigenvalue problem whose eigen
vector ism1 . To do so, one may partition the monomialsm into
four sets: y35m2\m1 , y25y3/x1 , y15m1\y2 , and y4

5m\(m1øm2). PartitioningK̂ to match, we rewrite Eq.~13! in
block matrix form as

S K1 K2 K3 K4

I 1x1C1 C2 0 0

0 I 2x 2I 2 0
D S y1

y2

y3

y4

D 50, (14)

whereI 1 ,I 2 are identity matrices andC1 ,C2 are sparse, having a
single entry of21 in each row of the pair. In some cases, the l
blockwise column is not present, but if it is, it must be full colum
96 Õ Vol. 126, JANUARY 2004
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rank. Using sparse Gaussian elimination or QR decompositionK4
can be reduced to upper triangular form yielding

S K̃11 K̃12 K̃13 U

K̃21 K̃22 K̃23 0

I 1x1C1 C2 0 0

0 I 2x 2I 2 0

D S y1

y2

y3

y4

D 50, (15)

for some upper triangular matrixU. Pre-multiplying by the (m
2n)3m matrix

S 0 0 I 1 0

0 I 2 0 K̃23
D ,

gives the equation

S I 1x1C1 C2

K̃21 K̃221K̃23x
D S y1

y2
D50, (16)

where the trailing blocks have been dropped, since they are z
The only computation involved is the triangularization ofK4 ,
which can be done efficiently by sparse routines. Eq.~16! is the
square generalized eigenvalue problem we seek.

For a particular topological type of spherical mechanism, a s
cific structure is specified by the values of its ‘‘sides,’’Si . In each
case, one must verify the full-rank condition, number~2! above,
for the procedure to be valid. For each type of mechanism,
have verified by numerical test on a structure having generic
rotations that this is so. This is sufficient to demonstrate that
procedure is valid for almost all mechanisms of the type, wh
the exceptions are an algebraic subset of the whole family. S
exceptional cases require new procedures, often more simple
the general case. We do not explore any such exceptions in
paper.

As in the original Sylvester method, the new approach giv
only a necessary condition. It may happen that Eq.~16! allows
extraneous roots. However, in the application of the method
spherical mechanisms, we find that in every case we are ab
find formulations without any extraneous roots. Again, this h
been verified by working numerical examples and checking t
all the solutions satisfy the original loop equations.

To solve one-loop and two-loop spherical mechanisms,
original Sylvester method is sufficient, but for the more difficu
three-loop mechanisms, the new approach is necessary. For
trative purposes, we indicate how to solve the simpler cases by
new method before proceeding to the three-loop case.

5 One-Loop Mechanism„Spherical Triangle…
The loop equation for the spherical triangle, Fig. 1, may

written as

Z1S1Z2S2Z3S35I . (17)

Using rotation matrices and Eq.~5!, one has

zTS1Ẑ2S2z5zTS3
Tz~11t2

2!. (18)

This is a single quadratic equation fort2 . If the sidesS1 ,S2 ,S3
are taken to be rotations about the respectivex-axes, it may be
seen that this is equivalent to the classical cosine law for sphe
triangles. It should be noted that instead of interior angles,
formulation uses exterior angles at each vertex.

The quaternion formulation Eq.~10! applied to this problem
gives

@$ i,j %,S1Ẑ2S2Ẑ3S3#50. (19)

These are bilinear int2 and t3 , that is, only the following mono-
mials appear:$1,t2 ,t3 ,t2t3%. Following the Modified Sylvester
approach from above and choosingm15$1,t2%, m25$t3 ,t2t3%,
one gets a system of the form
Transactions of the ASME
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t3I 21D S m1

m2
D50, (20)

in which A andB are 232 matrices of coefficients from the loo
equations. Following the formulation of Section 4,K25A, K3
5B, andK1 , K4 are not present, so we premultiply by (I B) to
get the 232 eigenvalue problem

~A1Bt3!m150. (21)

In this case, sincem2 is identical to the complement ofm1 ~i.e.,
m25m\m1), the modified elimination method amounts to th
same thing as the traditional Sylvester Dialytic Method.

6 Two-Loop Mechanism„Spherical Pentad…
The loop equations for the two-loop spherical pentad, Fig

can be written as

Z5S1Z1S2Z2S3Z3S45I ,
(22)

Z6S5Z1S2Z2S6Z4S75I .

Using rotation matrices, one obtains two quartic equations
t1 ,t2 :

f 15zT@S1Ẑ1S2Ẑ2S32S4
T~11t1

2!~11t2
2!#z50,

(23)

f 25zT@S5Ẑ1S2Ẑ2S62S7
T~11t1

2!~11t2
2!#z50.

The total degree is 42516, but the number of roots is only ha
that figure, because the equations are bi-quadratic. This ca
seen by computing the two-homogeneous Bezout number@19# as
the coefficient ofab in the polynomial (2a12b)2, which is 8.

To solve this system, first augment it with the equationsf 3

50, f 450 where f 35t1f 1 and f 45t1f 2 . Let T05$1,t1 ,t1
2,t1

3%.
The four polynomialsf 1 , f 2 , f 3 , f 4 contain 12 monomials, namel
T0 ,T15t2^ T0 ,T25t2

2
^ T0 . In the traditional Sylvester approach

one writes the system in the formM (t2)T050, whereM is a 4
34 matrix with entries that are quadratic int2 . This leads to the
eighth-degree polynomial equation detM(t2)50.

To apply the method of Section 4, letm15$T0 ,T1%, and m2
5$T1 ,T2%. Append the eight identitiest2T02T150 and t2T1
2T250, write the equations in the block matrix form as in E
~14! and premultiply by a matrix that annihilatesT2 as follows:

S 0 I 0

I 0 K2
D S K0 K1 K2

t2I 2I 0

0 t2I 2I
D S T0

T1

T2

D 50. (24)

~In this case,K4 of Eq. ~14! does not exist.! Multiply this out and
drop away the trailing trivial columns to get an 838 eigenvalue
problem.

Using quaternions, one obtains two equations per loop, fo
total of four equations int1 ,t2 ,t3 ,t4 :

f 15@$ i,j%,S1Ẑ1S2Ẑ2S3Ẑ3S4#50,
(25)

f 25@$ i,j%,S5Ẑ1S2Ẑ2S6Ẑ4S7#50.

Note thatf 1 does not containt4 and f 2 does not containt3 , and so
it is useful to append four new equations:

t4f 150, t3f 250. (26)

Altogether, we have 8 equations involving 16 monomials. L
m15$1,t2% ^ $1,t3% ^ $1,t4% and m25t1^ m1 , append the 8 iden-
tities t1m12m250 to proceed in a similar fashion as above to g
an 838 eigenvalue problem.

7 Three-Loop Mechanisms
Three-loop systems are, not surprisingly, a bit more diffic

than the one-loop or two-loop systems. In particular, it is
longer simple to find a formulation for which the origina
Journal of Mechanical Design
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Sylvester Dialytic Method gives a system of minimal degree.
stead, it will lead to a system having extraneous roots, wh
either cost extra computation to find and eliminate or require
ditional reduction steps to remove from the analytical equatio
In contrast, the new approach of Section 4 leads directly to
eigenvalue problem of minimal size.

7.1 Type 3a. By counterclockwise progression around ea
of the three loops in Fig. 3, one obtains three-loop equations
follows:

Z9S9Z28S3Z3S6Z6S125I ,

Z7S7Z38S1Z1S4Z4S105I , (27)

Z8S8Z18S2Z2S5Z5S115I .

The inverse rotationsZi8 appear where we traverse a joint in on
loop in the opposite direction of the adjoining loop. Note that t
loop around the central link impliesS35(S1S2)8.

The rotational matrix formulation eliminates the six angl
u4 , . . . ,u9 , giving the three equations

f 15zT@S9Ẑ2
TS3Ẑ3S62S12

T ~11t2
2!~11t3

2!#z50,

f 25zT@S7Ẑ3
TS1Ẑ1S42S10

T ~11t1
2!~11t3

2!#z50,
(28)

f 35zT@S8Ẑ1
TS2Ẑ2S52S11

T ~11t1
2!~11t2

2!#z50.

The three homogeneous Bezout number for this system is
coefficient of a1a2a3 in the polynomial (2a212a3)(2a1
12a3)(2a112a2), which is 16. Note that the equations a
numbered such thatf i is missing variablet i .

An order 16 eigenvalue problem may be derived as follow
Produce an augmented equation set by multiplying eachf i by the
16 monomials$1,t i ,t i

2,t i
3% ^ $1,t j% ^ $1,tk%. This gives 48 equa-

tions in the 64 monomialsm5 ^ i 51
3 $1,t i ,t i

2,t i
3%. Notice that the

difference, 64248516, is the size of the eigenvalue problem w
seek. We chooset1 as the eigenvariable and seek a list of
monomialsm1,m such thatt1^ m1,m and the corresponding
matrix K̂(t1) is generally nonsingular. By numerical test on
generic example, we have verified that

m15@$1,t1 ,t3% ^ $1,t2 ,t2
2,t2

3%#ø$t1t3 ,t1t2t3 ,t3
2,t2t3

2%

is sufficient in this regard. Reduction to an order 16 eigenva
problem proceeds as in Section 4.

We may also solve the problem using quaternions. The qua
nion version of the loop equations only eliminates ang
u7 ,u8 ,u9 , giving the six equations

f 15@$ i,j%,S7Ẑ38S1Ẑ1S4Ẑ4S10#50,

f 25@$ i,j%,S8Ẑ18S2Ẑ2S5Ẑ5S11#50, (29)

f 35@$ i,j%,S9Ẑ28S3Ẑ3S6Ẑ6S12#50.

At first, it might seem a disadvantage that we have more varia
than in the formulation with rotation matrices, but because
equations are lower in degree and more sparse, there is no
crease in difficulty. The six-homogeneous Bezout number is
16. To solve, note that for eachf i , there are three variables amon
t1 , . . . ,t6 which do not appear: call themt j ,tk ,t l . Multiply the
equations by the eight monomials$1,t j% ^ $1,tk% ^ $1,t l% to get 6
•8548 equations in the 64 monomialsm5 ^ i 51

6 $1,t i%. Choosing
t1 as the eigenvalue, we find that the monomial setm1
5@$1,t2 ,t3 ,t2t3 ,t4 ,t2t4% ^ $1,t5%#ø$t6 ,t2t6 ,t4t6 ,t2t4t6%, suffices
to derive an order 16 eigenvalue problem.
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7.2 Type 3b. The loop equations for Type 3b mechanism
Fig. 4, are

Z7S4Z1S1Z2S2Z4S35I ,

Z8S7Z38S8Z28S5Z5S65I , (30)

Z9S11Z1S1Z2S88Z3S9Z6S105I .

For rotation matrices, these give

f 15zT@S4Ẑ1S1Ẑ2S22S3
T~11t1

2!~11t2
2!#z50,

f 25zT@S7Ẑ3
TS8Ŝ2

TS52S6
T~11t2

2!~11t3
2!#z50, (31)

f 35zT@S11Ẑ1S1Ẑ2S8
TẐ3S92S10

T ~11t1
2!~11t2

2!~11t3
2!#z50.

The appearance of all three variables inf 3 increases the number o
roots: the three-homogeneous Bezout number is now 24. The
lution procedure is similar to that used for Type 3a mechanis
First, an augmented system is produced by multiplyingf 1 , f 2 , f 3
by all possible monomials that give degrees less than or equal
for each of the variables. Thus, we get the same 64 monomia
before, but sincef 3 now has all three variables at the outset, w
get fewer equations. Bothf 1 and f 2 give 16 equations in the
augmented system, butf 3 gives only 8, for a total of 40 equations
The excess of monomials over equations is 64240524, so we
must append 24 identities to get the desired eigenvalue form
the problem. Choosing to solve fort3 , we find that m1

5@($1,t1 ,t1
2,t1

3% ^ $1,t2%)ø$t2
2,t1t2

2,t2
3,t1t2

3%# ^ $1,t3%, which has
24 elements, suffices to form a nonsingular eigenvalue proble

For quaternions, the loop equations yield

f 15@$ i,j%,S4Ẑ1S1Ẑ2S2Ẑ4S3#50,

f 25@$ i,j%,S7Ẑ38S8Ẑ28S5Ẑ5S6#50, (32)

f 35@$ i,j %,S11Ẑ1S1Ẑ2S88Ẑ3S9Ẑ6S10#50.

The six-homogeneous Bezout number is 24. To solve, genera
augmented system of equations by multiplying by all the mu
linear monomials in the missing variables. We get the same6

564 monomials as for the Type 3a quaternion formulation,
only 2•812•812•4540 equations. Choosing to solve fort1 , a
sufficient choice of monomials is m15@($1,t2% ^ $1,t3%
^ $1,t4%)ø($1,t2 ,t2t4 ,t3t4% ^ $t5%)# ^ $1,t6%).

7.3 Type 3c. The loop equations for Type 3c mechanism
Fig. 5, are

Z7S4Z1S1Z2S2Z4S35I ,

Z8S8Z1S1Z2S5Z3S6Z5S75I , (33)

Z9S11Z1S1Z2S5Z3S9Z6S105I .

For rotation matrices, these give

f 15zT@S4Ẑ1S1Ẑ2S22S3
T~11t1

2!~11t2
2!#z50,

f 25zT@S8Ẑ1S1Ẑ2S5Ẑ3S62S7
T~11t1

2!~11t2
2!~11t3

2!#z50,
(34)

f 35zT@S11Ẑ1S1Ẑ2S5Ẑ3S92S10
T ~11t1

2!~11t2
2!~11t3

2!#z50.

The three-homogeneous Bezout number now rises to 32. Form
augmented system, as before, with equations having up to
cubic power of each variable, for a total of 161818532 equa-
tions in 64 monomials. If we choose to solve fort2 , a sufficient
choice of monomials ism15$1,t1 ,t1

2,t1
3% ^ $1,t2% ^ $1,t3 ,t3

2,t3
3%.

For quaternions, the loop equations yield
98 Õ Vol. 126, JANUARY 2004
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f 15@$ i,j %,S4Ẑ1S1Ẑ2S2Ẑ4S3#50,

f 25@$ i,j %,S8Ẑ1 ,S1Ẑ2S5Ẑ3S6Ẑ5S7#50, (35)

f 35@$ i,j %,S11Ẑ1S1Ẑ2S5Ẑ3S9Ẑ6S10#50

The six-homogeneous Bezout number is 32. To solve, genera
augmented system of equations by multiplying by all the mu
linear monomials in the missing variables. We get the same6

564 monomials as before, but only 2•812•412•4532 equa-
tions. Choosing to solve fort1 , a sufficient choice of monomials
is m15 ^ i 52

6 $1,t1%.

8 Back-Substitution
Back-substitution is the process of finding all of the joint ang

after the basic eigenvalue problem has been solved. In our for
lations, the eigenvalues are the solutions for one variable.
eigenvectors are, up to scale, the monomialsm1 . In every case,
m1 includes the monomial 1, so the corresponding element in
eigenvector reveals the scale factor. If it is zero, the solution i
infinity; otherwise, we may divide out the scale factor and retrie
the other variablest i that appear in the equations.

There are, however, some angles that do not appear in an
the equations, because we eliminate them in the initial formu
tion. For the quaternion formulations, in the notation of Eq.~1!,
the initial angleu1 is eliminated. That angle is easily recovered
inverting the other rotations, that is

Z15~S1Z2S2¯Zk21Sk21ZkSk!8.

For the rotation matrix formulations, two anglesu1 anduk are
eliminated from each loop, see Eq.~5!, so we must reconstruc
both of them. Pre-multiplication of Eq.~1! by zT yields 3 equa-
tions free ofu1 . For back-substitution, one may use the first tw
which are linear in the sine and cosine ofuk , and therefore give a
unique value.~The third of these is exactly Eq.~5!.! Onceuk is
known, one may reconstruct the leading rotation in the same
as for the quaternion formulation.

9 Solutions at Infinity
If u5p then t5tan(u/2) is infinite, so if a mechanism has

solution nearp, numerical trouble occurs. There is a simple fix f
this problem: replace the angle withu5f1c, for some constant
c, and solve for the new variablef. The z-rotation of anglec is
constant and can be absorbed into the adjacent side rotationsS. If
we choosec at random, there is a zero probability that the soluti
for f will be exactlyp and only a small probability that it will be
close enough top to cause trouble.

A somewhat more elegant approach is to treat the varia
homogeneously. For quaternions, this just means that at Eq.~8!,
we keeps5sin(u/2) and c5cos(u/2) both as variables. In the
elimination procedures above, where we multiply by$1,t%, instead
multiply by $c,s%, and where we use an identitytm12m250, use
sm12cm250. The final result will be a generalized eigenvalu
problem inc and s, that is, a problem of the form (Ac1Bs)m
50. When solved by theqz algorithm in Matlab, based on@20#,
this formulation is immune to theu5p problem. For rotation
matrices, a similar treatment may be obtained by usage of
substitutions sinu5(2sc)/(c2 1s2) and cosu5(c22s2)/(c21s2),
which after clearing denominators, leads to homogeneous e
tions.

It may happen that a problem yields solutions of the formt
56A21, or equivalently in the homogeneous treatmentc21s2

50. These are solutions at infinity of another type: they give
well-defined value foru. Such solutions indicate that the mech
nism under study is a special one with fewer solutions than
general case. This implies that a reduction of the problem sho
be possible.
Transactions of the ASME
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10 Conclusion
This paper shows how to formulate and solve the loop eq

tions for all the indecomposable spherical structures up to th
loops. Formulations using rotational matrices and quaternions
both considered. In each case, the problem has been transfo
into an eigenvalue problem of minimal degree. Numerical
amples of each have been solved and found to be well beha
The number of solutions for each case is as follows: one-l
~triangle!, 2; two-loops~pentad!, 8; three-loops type 3~a,b,c!, 16,
24, and 32, respectively. For the topologically similar plan
mechanisms, these numbers are 2, 6, 14, 16, and 18. It is cu
that the complexity of the three-loop spherical mechanisms
more strongly affected by topology than their planar counterpa
As shown by examples in the Appendix, spherical structures w
all real roots are known for the triangle, the pentad and struc
3a, but it is not yet known whether there exist structures of ty
3b or 3c having all real roots.

These results have application to forward and inverse kinem
solutions for all kinds of spherical mechanisms, from one-degr
of-freedom mechanisms up to multi-degree-of-freedom rob
The methods also apply to solving the rotational component of
loop closure equations for spatial mechanisms. Also, the elim
tion approach introduced here may have uses in the treatme
other spatial mechanisms and systems of polynomial equat
arising in other fields.

Nomenclature

AøB 5 union of setsA andB
A^ B 5 product of sets:$all xux5ab, aPA, bPB%
A\B 5 set minus:A2(AùB)

ci ,si ,t i 5 half-angle functions cos(ui/2),sin(ui/2),tan(ui/2)

Appendix A

Numerical Examples. This appendix tabulates an examp
problem and its solution for each mechanism type. Side rotat
are given in terms of rotation functionsRx(a) andRz(a), which
are right-handed rotations of anglea ~in radians! about thex-axis
and z-axis, respectively. To save space, answers are given
tangent-half-angles for joints 1, 2, and 3. Even though there
nine joints in the three-loop mechanisms, they have been n
bered so that the first three determine the relative orientation o
the ternary and quaternary links, hence locating all the joint a
All computations were done in double precision using Matla
After joint values were computed from the eigenvectors, the
siduals in the loop equations were checked. The magnitude o
residuals was always better than 1027, and commonly better than
10212, showing a high level of numerical stability. Of cours
random sampling does not encounter problems having mult
roots or other singularities, which might require more specializ
procedures to compute accurately.

Triangle. The given sides~units in radian! are

S15Rx~ .3!, S25Rx~ .4!, S35Rx~ .5!.

The numerical solutions are listed in Table 1.

Pentad. The given sides~units in radian! are

S15Rx~2.09!, S25Rx~4.59!, S35Rx~5.24!,

S45Rx~4.84!, S55Rz~4.98!Rx~4.22!,

S65Rz~2.15!Rx~4.59!, S75Rx~1.42!.

This example is notable for having all real roots. The numeri
solutions are listed in Table 2.
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Type 3a. The given sides~units in radian! are:

S15Rx~4.863!, S25Rz~1.029!Rx~5.339!,

S35S28S18 , S45Rz~0.893!Rx~1.857!,

S55Rz~5.464!Rx~1.655!,

S65Rz~5.884!Rx~1.448!,

Table 1 Solutions for triangle „tangent half-angles …

t1 t2 t3

1 21.949937 20.979864 22.900527
2 1.949937 0.979864 2.900527

Table 2 Solutions for pentad „tangent half-angles …

t1 t2 t3

1 7.791279 20.361058 0.107830
2 22.294342 1.330759 20.429469
3 2.005683 0.096003 20.492788
4 20.265766 20.785437 3.773640
5 0.042981 5.488394 229.689637
6 0.258660 212.402011 3.878452
7 1.228881 0.164803 20.809339
8 1.084466 22.835662 0.917918

Table 3 Solutions for type 3a „tangent half-angles …

t1 t2 t3

1 248.566592 22.515025 0.061630
2 42.882497 1.034898 25.306974
3 9.041544 23.058067 0.074276
4 2.432176 0.600422 21.445874
5 2.571563 25.427725 21.764800
6 22.038693 21.152379 23.777007
7 1.602743 0.468618 2.361986
8 21.567532 210.216266 0.073543
9 21.318230 25.005893 0.083233
10 21.003469 23.087755 21.992006
11 1.034471 5.927095 20.076588
12 20.638457 20.030277 20.903191
13 0.421327 20.314664 4.672430
14 0.373999 0.787632 4.480535
15 20.066276 0.342857 2.205674
16 20.053188 21.157316 20.097254

Table 4 Solutions for type 3b „tangent half-angles …

t1 t2 t3

1 20.300238 20.975914 20.141182
8.099887i 1.285612i 0.750772i

3 24.631640 20.558862 20.826819
4 5.155489 5.750268 0.83925
5 23.222447 20.358801 2.598104
6 20.014653 0.125571 0.01180

3.010856i 0.864406i 21.052918i
8 3.491401 2.753540 22.720061
9 2.801305 22.288869 21.808784
10 1.758171 22.351800 1.824165
11 1.342918 1.194637 22.074716
12 1.021104 1.082175 0.98319
13 20.911262 0.029402 21.012938
14 20.722349 0.041045 1.89211
15 0.535529 22.745870 1.627629
16 0.336466 23.201457 22.252201
17 20.337104 20.063246 2.073473
18 20.000938 0.125950 0.01377

0.127673i 20.864050i 1.061203i
20 20.008712 21.048319 20.214501

0.042197i 1.256272i 0.856293i
22 20.175480 20.413658 20.831313
23 20.148142 20.676910 20.840920
24 20.149006 20.936849 3.028856
JANUARY 2004, Vol. 126 Õ 99
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6

5

S75Rx~1.454!, S85Rx~1.530!,

S95Rx~5.383!, S105Rx~1.739!,

S115Rx~1.950!, S125Rx~5.088!.

This example, found after approximately one million random
als, has 16 real roots, listed in Table 3. About 80% of rand
examples have no real roots.

Type 3b. The given sides~units in radian! are:

S15Rx~1.76!, S25Rz~2.30!Rx~1.46!,

S35Rx~4.27!, S45Rx~1.20!,

S55Rz~0.81!Rx~0.41!, S65Rx~5.03!,

S75Rx~1.49!, S85Rx~0.87!,

S95Rz~0.36!Rx~0.11!, S105Rx~4.77!,

S115Rx~4.01!Rz~0.88!.

This example has 16 real and 8 complex roots, listed in Tabl
The complex roots occupy two rows each, with the imaginary p
appearing in the second row. The complex conjugate root is
written in the table, but is implied; the numbering in the fir
column reflects this.

Table 5 Solutions for type 3c „tangent half-angles …

t1 t2 t3

1 210.949013 21.280400 0.021278
2 5.010578 0.687520 7.72294
3 4.539627 21.383537 22.719863
4 4.051448 0.746949 20.155187
5 22.337324 21.232473 23.300713

2.691620i 0.291555i 23.383834i
7 3.132934 0.838985 4.82176
8 22.312559 20.771448 20.086123
9 22.144114 20.037149 20.654865
10 21.804988 20.200343 1.826531
11 1.502078 1.221439 20.272128
12 0.585683 0.134565 20.386102

1.182659i 24.205445i 0.834128i
14 0.645892 1.826968 0.62423

1.090596i 22.428202i 1.068532i
16 1.040232 20.736672 0.331547
17 20.379239 0.038893 21.491983

0.964691i 20.485738i 20.192974i
19 20.227070 0.024609 0.52489

0.956013i 20.513776i 20.613175i
21 0.262808 2.790265 0.58304

0.926871i 3.143888i 0.821044i
23 0.415773 2.574668 20.686235

0.761260i 0.876722i 0.290866i
25 0.380018 1.136403 20.309627
26 0.321539 20.181036 2.211928
27 0.029948 0.027042 20.070381

0.195819i 20.287436i 20.140097i
29 20.123758 0.124726 4.65501

0.117978i 20.388148i 9.603347i
31 0.066038 0.477103 4.19050
32 0.055442 0.250194 20.154052
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Type 3c. The given sides~units in radian! are:

S15Rx~5.01!, S25Rx~5.59!,

S35Rx~1.39!, S45Rx~3.76!Rz~1.00!,

S55Rz~0.24!Rx~1.33!, S65Rx~1.78!,

S75Rx~4.82!, S85Rx~2.74!Rz~1.76!,

S95Rz~1.66!Rx~1.16!, S105Rx~4.61!,

S115Rx~4.74!.

This type 3c example has 14 real and 18 complex roots. Since
planar structure of this type can have 18 real roots, at least
many must be possible for the spherical case, but 14 real is
most found in 100,000 random trials. In Table 5, as in the pr
example, the complex roots occupy two rows each, with
imaginary part appearing in the second row. The complex con
gate root is not written in the table, but is implied; the numberi
in the first column reflects this.
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